首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   26篇
  国内免费   38篇
大气科学   78篇
地质学   1篇
海洋学   2篇
  2022年   1篇
  2021年   10篇
  2020年   10篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   13篇
  2009年   8篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有81条查询结果,搜索用时 250 毫秒
11.
环北京地区积层混合云微物理结构飞机联合探测研究   总被引:6,自引:2,他引:4  
利用北京、山西和河北三省市飞机在环北京地区探测的积层混合云微物理结构特征资料,结合卫星等宏观观测资料,分析了环北京地区积层混合云系空间云微物理结构特征。结果显示,冷锋云系前部,云内部微物理参数空间分布不均匀,2700m以上较大,垂直方向云粒子浓度和直径呈正相关关系,浓度极值间差7个量级,大滴粒子浓度差7个量级,降水粒子浓度差6个量级,水平方向云粒子浓度和直径分布不均匀,呈反相关关系。冷锋云系中部,云微物理参数垂直分布不均匀,在2500~3600m和4000m以上高度层出现云粒子峰值,且云粒子浓度和直径呈反相关关系,云滴粒子浓度极值间差6个量级,大滴粒子浓度差7个量级,降水粒子浓度差5个量级,水平方向云粒子分布不均匀,云粒子浓度和直径呈反相关关系。冷锋云系前部,云粒子谱在4800m高度谱型为单峰谱,4200m高度谱型多峰分布,3600m高度谱型为双峰谱。云降水粒子谱三高度层谱型差异不大,4800m高度谱型为单调递减谱,峰值在小粒子端(≤100μm),4200m和3600m高度谱型相似,为双峰谱,峰值分别在≤小于100μm和230μm处。降水粒子谱三高度层谱型相似,都为单峰谱,峰值相差不大。冷锋云系中部,云粒子谱在三高度层谱型差异较大,4800m高度谱型为单峰谱,峰值在小滴端,4200m高度谱型为单峰谱,峰值在15μm处,3600m高度谱型为双峰谱,峰值分别在7μm和30μm处。云降水粒子谱三高度层谱型差异不大,4800m高度谱型为单调递减谱,峰值在小粒子端(≤100μm),4200m和3600m高度谱型相似,为双峰谱,峰值分别在≤100μm和200μm处。降水粒子谱三高度层谱型相似,都为单峰谱,峰值相差不大。  相似文献   
12.
祁连山夏季地形云综合探测试验   总被引:1,自引:0,他引:1  
2006年和2007年夏季在祁连山冷龙岭西段开展了地形云云量、云状、大气水汽、风场、雨滴谱和雨强等的综合探测试验,以分析祁连山地形云的特征。结果表明:①祁连山区夏季云量丰富,平均云量在6成以上。西南气流天气背景下总云量多达8成;②祁连山夏季无降水日大气水汽非常少,700 hPa以上层大气相对湿度大多在20%以下;③西南气流背景下祁连山南北侧山谷风的共同作用,气流昼间向山顶辐合,夜间向山谷辐散,当水汽条件充足时,极易抬升形成可以产生降水的地形云;④祁连山降水主要由小于1 mm的雨滴组成。  相似文献   
13.
新探测仪器资料在短时强降水过程中的应用   总被引:1,自引:0,他引:1  
结合新一代多普勒天气雷达观测,利用德国RPG-HATPRO-G3型14通道并行地基微波辐射计观测的温度和液态水路径数据、THIES公司THIES CLIMA LNM型地面激光雨滴谱仪获取的地面雨强资料,综合分析了2015年8月3日济南短时强降水天气过程逆温层分布特征、液态水路径变化、雨滴谱特征分布及拟合分析。结果表明,由于受强对流降水过程中的潜热增温作用,大气中存在逆温层,且较强;液态水含量存在较强的短时积聚现象,降水前液态水含量路径起伏较大,跃增非常明显,伴随降水强度的减弱,液态水路径起伏减小;整个降水过程中,前期雨滴谱呈现双峰分布,强降水和后期降水为单峰谱,雨滴谱特征符合Gamma分布。  相似文献   
14.
一次飑线过程的雨滴谱特征研究   总被引:3,自引:0,他引:3  
利用4台Thies激光雨滴谱仪组成的观测网和CINRADA/SA多普勒雷达观测资料,通过单点雨滴谱和积分参数时间序列分析、以及γ谱拟合参数和Z-R关系等的统计分析,研究成熟平行层状飑线不同部位雨滴谱和积分参数的演变特征。结果表明,不同部位雨滴谱和积分参数演变特征存在明显差别,但有一致的基本特征,即在雨强增大阶段为较小的小粒子数浓度,较大的大粒子数浓度和谱宽,而雨强减弱阶段为较大的小粒子数浓度,较小的大粒子数浓度和谱宽,所以,雨强增大阶段具有较低的雨滴浓度和较大的雷达反射率因子,以及较小的γ谱斜率参数λ和形状参数μ。但有时雨强减弱阶段存在较大的大粒子数浓度和谱宽,因此,具有较大的雷达反射率因子;统计表明,γ谱三参数N0、μ、λ与雨强的关系可以用幂函数拟合, N0随雨强增大而增大,μ、λ随着雨强的增大而减小。λ-μ关系可以用二次多项式拟合,对流云Z-R关系为Z=324R1.60。不同部位雨滴谱演变特征的差异对Z-R关系等统计关系影响明显,但对λ-μ关系影响较小。平行层状飑线不同部位雨滴谱和积分参数演变特征与拖曳层状飑线对流带典型雨滴谱演变特征类似,但也存在一些明显差别,这些差异是否与平行层状飑线动力结构的不同有关,尚需进一步的研究。   相似文献   
15.
王俊 《山东气象》2017,37(4):25-33
利用济南CINRAD/SA新一代多普勒天气雷达资料,统计分析了2004—2015年约15万km2区域内发生的148个线状中尺度对流系统(linear mesoscale convective systems,简称LMCSs)的多普勒雷达回波特征。主要分析了LMCSs的年和月分布、典型尺度、典型回波强度的统计特征以及初始回波出现时间、位置、LMCSs持续时间、演变过程回波合并特征、移动速度和方向、发展后期回波演变特征、组织类型等。LMCSs存在明显的年际变化,不同年份之间有很大的差别,而每年的6月和7月是LMCSs的高发期;80%的LMCSs是大于50 km的中-β尺度,20%属于中-α尺度,成熟期97.3% LMCSs的最大回波强度在55~70 dBz间;10—22时之间易开始形成LMCSs,14—16时是峰值,凌晨不易形成LMCSs,而LMCSs持续时间在2~18 h之间,6~8 h是峰值;一半的LMCSs在演变过程出现回波合并,合并过程可以分为与孤立对流单体合并、与对流回波群合并和与对流回波带合并三类;地形对LMCSs的触发有重要影响,太行山脉、鲁中山区的北麓和西麓容易触发形成LMCSs。这些研究为认识LMCSs发生、演变、减弱各阶段的特征,进一步提高对LMCSs的实时监测、短时预警水平提供了基础。  相似文献   
16.
2016年12月19日—2017年1月9日,受静稳天气影响,济南接连出现了10次大雾天气过程,期间最低能见度不足50 m。利用10次冬季雾过程收集的雾滴谱资料、自动气象观测站加密资料、NCEP/NCAR再分析资料以及常规气象资料,分析了济南冬季雾期间的环流背景、雾类型以及微物理结构特征等。结果表明:济南冬季雾中以小滴为主,直径8 μm以下的小滴占总数的88%以上,小滴数与数浓度具有较好的线性关系;谱型有“单峰窄谱”和“多峰宽谱”之分,“单峰窄谱”雾谱宽不超过13 μm,小雾滴所占比例很高,液态含水量与数浓度具有较好的线性关系,各微物理量较小,“多峰宽谱”雾平均谱宽在34 μm以上,液态含水量与直径12 μm以上的大滴数具有较好的线性关系,各微物理量较大;平流辐射雾的数浓度和液态含水量最大,辐射雾次之,蒸发雾最小;冬季雾具有明显的地域性特征,与南京和上海相比,济南冬季雾数浓度明显偏小;辐射雾和平流辐射雾中液态含水量偏小1~2个数量级,且谱宽明显偏窄。  相似文献   
17.
2018年8月13—14日,1814号台风“摩羯”(YAGI)由强热带风暴逐渐减弱成热带低压,在山东省境内造成强降水,并引发了系列龙卷。龙卷发生后,气象部门对龙卷进行了详细的实地灾情调查。通过对6处龙卷路径无人机航拍的高分辨率图像和现场勘察的建筑物损毁、树木折断、庄稼倒伏等状况的综合分析,判断发生在滨州市姜楼镇、东营市盐窝镇的龙卷达到EF2级,其他为EF0/EF1级。上述龙卷都发生在残余低压环流中心移动方向的右前方,且集中在残余低压环流外围偏北段雨带中的小型超级单体内;其中在滨州引发的龙卷距离残余低压环流中心最近,约150 km,在潍坊引发的龙卷距离残余低压环流中心最远,约400 km。这些小型超级单体在雨带中,自南向北或者自东南向西北方向移动,尺度都很小,发展高度较低,强反射率因子核位于风暴的底部,低层反射率因子的南端有入流缺口,呈钩状回波特征;低层径向速度产品有较强的正负速度对。用雷达系统原适配参数值计算表明,在调查的6次龙卷中,仅有1次龙卷发生前算出了中气旋(M)产品,2次算出龙卷涡旋特征(TVS)产品;用修改的适配参数值进行计算,在6次龙卷发生前都算出了M产品,4次算出TVS产品,优化适配参数可提前将弱的M和TVS识别出来,对龙卷的临近预警具有指导作用。  相似文献   
18.
多普勒天气雷达是目前对短时强对流天气进行监测的主要手段之一.为了能够使多普勒天气雷达资料在业务预报中得到更加准确、方便的使用,设计开发了利用CINRAD/ CC新一代多普勒雷达资料建立对临近灾害性天气的监测和预警数据库系统.该系统采用Visual C++6.0 + SQL Server 2000为开发环境,由雷达原始数据采集和处理系统、雷达图像的显示系统、雷达数据库系统、监测及预警信息的发布系统、客户端应用系统等部分组成,有较好的兼容性和可移植性.实现了实时显示、入库、监测和预警、动画回放等功能,并且系统资源占用少、效率高.能够方便地为气象业务人员使用,帮助预报人员更好地分析天气系统的内部结构及发展趋势,特别是在临近预报和帮助人影值班人员指导防雹作业等方面均能发挥十分重要的作用.  相似文献   
19.
山东“7.18”致灾暴雨成因分析   总被引:13,自引:3,他引:10  
利用实况观测资料、中尺度自动站资料和NCEP再分析资料,对2007年7月18日山东省大暴雨过程进行了诊断分析,同时还分析了暴雨致灾原因。结果表明,本次大暴雨是由高空冷涡南部的低槽、底层准东西向切变线、副热带高压西北边缘的暖湿气流以及来自东北南下冷空气共同影响所致。低层前期明显的持续升温为暴雨的产生创造了极好的热力条件,强盛的低空西南暖湿气流输送为此次暴雨提供了充足的水汽,同时山东上空低层高温高湿、能量增大,形成上干冷下暖湿的对流性不稳定层结。沿850 hPa切变线北侧东北气流迂回南下的冷空气与低空西南急流携带的暖湿空气在山东交汇,冷暖空气在对流层低层相互作用,具有明显的暖锋锋生特征,弱冷空气的低层侵入对暖湿空气具有抬升作用,促使对流发展和不稳定能量释放产生暴雨。地面存在中尺度辐合中心或辐合线的生成和发展,是这次大暴雨产生的启动机制,大暴雨的分布与地面辐合线的走向基本一致。降水历时短强度大,特殊的地势地貌是本次暴雨致灾的重要原因。  相似文献   
20.
Lightning and Doppler radar observations of a squall line system   总被引:2,自引:0,他引:2  
A typical squall line with damaging wind and hailstones occurred on 28 April 2006 in Shandong Province, middle eastern China, and caused great economic loss. The characteristics of cloud-to-ground lightning (CG) in the squall line were studied in detail by combining the data from the ground-based CG location network, two Doppler radars and the Lightning Imaging Sensor on the TRMM satellite. Results show that positive CG flashes accounted for 54.7% of the total CG flashes. During the initial developing stage, the CG flash rate was lower than 0.5fl min− 1 and most of the CG flashes were positive. It increased significantly, up to 4.5fl min− 1, along with the rapid development of the squall line, and the percentage of positive CG was more than 75% during this period. The CG flash rate began to decrease but the percentage of negative CG flash increased gradually and exceeded that of positive CG during the mature and dissipating stages. Positive CG flashes tended to occur on the right flank and negative ones on the left flank. Strong wind at the surface occurred in or near the regions with dense positive CG flashes. Almost all positive CG flashes occurred near the strong radar echo regions, in the front parts of the squall line. However, the negative CG flashes almost exclusively occurred in the regions with weak and uniform radar echoes. The total flash rate in the storm was very high, up to 136fl min− 1, and its ratio of intracloud flashes (IC) to CG flashes was 35:1. Dense positive CG flashes corresponded to updraft regions, they did not occur in the core of the updraft, but just behind and close to the main updraft instead. The rear inflow jet, between 3 and 6 km, played an important role in the formation of the bow echo and very strong wind at surface. The CG distribution features in the squall line were obviously different from that of an ordinary MCS. The charge structure could be roughly described as an inverted charge structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号